Finite Element Method to Solve Poisson’s Equation Using Curved Quadratic Triangular Elements

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Triangular Elements in the Finite Element Method

For a plane polygonal domain Q and a corresponding (general) triangulation we define classes of functions pmix, v) which are polynomials on each triangle and which are in C^'CQ) and also belong to the Sobolev space ^""^'(n). Approximation theoretic properties are proved concerning these functions. These results are then applied to the approximate solution of arbitrary-order elliptic boundary va...

متن کامل

Contouring Curved Quadratic Elements

We show how to extract a contour line (or isosurface) from quadratic elements—specifically from quadratic triangles and tetrahedra. We also devise how to transform the resulting contour line (or surface) into a quartic curve (or surface) based on a curved-triangle (curved-tetrahedron) mapping. A contour in a bivariate quadratic function defined over a triangle in parameter space is a conic sect...

متن کامل

A finite elements method to solve the Bloch-Torrey equation applied to diffusion magnetic resonance imaging

The water proton magnetization subject to diffusion-encoding magnetic field gradient pulses in a heterogeneous medium can be modeled by the multiple compartment Bloch-Torrey partial differential equation (PDE). In addition, steady-state Laplace PDEs can be formulated to produce the homogenized diffusion tensor that describes the diffusion characteristics of the medium in the long time limit. In...

متن کامل

On Interpolation Errors over Quadratic Nodal Triangular Finite Elements

Interpolation techniques are used to estimate function values and their derivatives at those points for which a numerical solution of any equation is not explicitly evaluated. In particular, the shape functions are used to interpolate a solution (within an element) of a partial differential equation obtained by the finite element method. Mesh generation and quality improvement are often driven ...

متن کامل

Application of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)

A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IOP Conference Series: Materials Science and Engineering

سال: 2019

ISSN: 1757-899X

DOI: 10.1088/1757-899x/577/1/012165